There is currently substantial evidence that Cannabis sativa derivates act on brain reward in a way very similar to other drugs of abuse and exert numerous pharmacological effects through their interaction with various neurotransmitters and neuromodulators. Among them, the endogenous opioids seem to play an important role in modulating the addictive properties of cannabinoids. Given the plethora of research activity on such a topic, this brief review is necessarily focused on cannabinoid/opioid interaction in reward-related events and restricted to the recent literature. Recent findings from our and other laboratories concerning cannabinoid reinforcing effects as revealed by behavioral animal models of addiction are here summarized. Evidence is then provided demonstrating a functional cross-talk between the cannabinoid and opioid systems in the mutual modulation of the addictive behavior; accordingly, very recent data from transgenic mice lacking either the cannabinoid CB1 or opioid receptors are also presented. Finally, the role of the endogenous cannabinoid system in relapse to opioids is investigated by means of extinction/reinstatement animal models following a period, even prolonged, of drug abstinence. Altogether, the reviewed studies provided a better understanding of the neurobiological mechanisms involved in cannabinoid actions and revealed a bidirectional interaction between the endogenous cannabinoid and opioid systems in reward that extends to central mechanisms underlying relapsing phenomena. Challenges for the future involve elucidation of the neuroanatomical substrates of cannabinoids action, even in light of the therapeutic potential of these compounds.

http://www.ncbi.nlm.nih.gov/entrez/q...=pubmed_docsum

The mechanism of action of cannabidiol, one of the major constituents of cannabis, is not well understood but a noncompetitive interaction with mu opioid receptors has been suggested on the basis of saturation binding experiments. The aim of the present study was to examine whether cannabidiol is an allosteric modulator at this receptor, using kinetic binding studies, which are particularly sensitive for the measurement of allosteric interactions at G protein-coupled receptors. In addition, we studied whether such a mechanism also extends to the delta opioid receptor. For comparison, (-)-Delta9-tetrahydrocannabinol (THC; another major constituent of cannabis) and rimonabant (a cannabinoid CB1 receptor antagonist) were studied. In mu opioid receptor binding studies on rat cerebral cortex membrane homogenates, the agonist 3H-DAMGO bound to a homogeneous class of binding sites with a KD of 0.68+/-0.02 nM and a Bmax of 203+/-7 fmol/mg protein. The dissociation of 3H-DAMGO induced by naloxone 10 microM (half life time of 7+/-1 min) was accelerated by cannabidiol and THC (at 100 microM, each) by a factor of 12 and 2, respectively. The respective pEC50 values for a half-maximum elevation of the dissociation rate constant k(off) were 4.38 and 4.67; 3H-DAMGO dissociation was not affected by rimonabant 10 microM. In delta opioid receptor binding studies on rat cerebral cortex membrane homogenates, the antagonist 3H-naltrindole bound to a homogeneous class of binding sites with a KD of 0.24+/-0.02 nM and a Bmax of 352+/-22 fmol/mg protein. The dissociation of 3H-naltrindole induced by naltrindole 10 microM (half life time of 119+/-3 min) was accelerated by cannabidiol and THC (at 100 microM, each) by a factor of 2, each. The respective pEC50 values were 4.10 and 5.00; 3H-naltrindole dissociation was not affected by rimonabant 10 microM. The present study shows that cannabidiol is an allosteric modulator at mu and delta opioid receptors. This property is shared by THC but not by rimonabant.

http://www.ncbi.nlm.nih.gov/entrez/q...=pubmed_docsum